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Pressure-driven reentrant phenomena in liquid crystals: the role of inverse layer spacing

Shri Singh*, Amit Srivastava and Debanand Sa

Department of Physics, Banaras Hindu University, Varanasi -221005, India

(Received 7 July 2009; final version received 20 November 2009)

The occurrence of pressure-driven reentrant phenomena observed in high-pressure experimental studies in some
achiral mesogenic materials has been explained using a thermodynamic model based on Landau–de Gennes theory.
In this approach, the free-energy is expanded in terms of nematic, smectic A order parameters and the couplings
(cubic and biquadratic) between them. The basic theme here is that the ‘inverse layer spacing’, which mimics an
order parameter, becomes coupled to the nematic and smectic A order parameters. Secondly, in addition to the
order parameter couplings the N–SA metastable temperature (which appears due to elimination of inverse layer
spacing from the free-energy density expression) becomes pressure dependent. The occurrence of a pressure-driven
reentrant nematic phase is explained in terms of these three pressure-dependent parameters. They all show smooth
but rapid variation at the critical pressure beyond which nematic reentrance appears.

Keywords: liquid crystals; reentrant phenomena; phase transitions; Landau–de Gennes theory

1. Introduction

The phenomenon of reentrant phase transition, that

is an occurrence of a low symmetric phase in between
two high symmetric phases, is intrinsically novel

and the sustained interest in this problem is underlined

by its discovery in amazingly diverse classes of

condensed matter systems [1–17]. In achiral liquid

crystals, the nematic (N)–partial bilayer smectic A

ðSAd
Þ–reentrant nematic (NR)–monolayer smectic

A ðSA1
Þ phase sequence was first reported by Cladis

[18] in a mixture of {p-[p-hexyloxybenzylidene-amino]
benzonitrile} (HBAB) and [N-p-cyanobenzylidene-p-

n-octyloxyaniline] (CBOOA). It has also been

observed [19–21] that the reentrance can be driven by

increasing pressure in pure compounds and their mix-

tures. X-ray and microscopy studies showed [22,23]

that the reentrant nematic phase is similar to the clas-

sical nematic phase but may coexist with crystalline

fluctuations. Both the nematic phases are uniaxial and
the defect structure of the NR phase observed in

cylindrical geometry is identical to that of the N

phase. The phase sequence of multiple reentrance has

been observed in several mesogenic compounds.

The phenomenon of reentrant polymorphism in

liquid crystals is very rich [3,6]. However, the origin

of the occurrence of reentrance is still an unsolved

problem in condensed state and statistical mechanics.
From mere energy–entropy arguments the appearance

of the reentrant phase is inexplicable. Its microscopic

origin varies from system to system and is still deba-

table in many cases. In the case of liquid crystals, only

qualitative explanations have been possible. The first

tentative explanation was given by Cladis [19] herself

in which it was assumed that the forces stabilising the

layers (the SA phase) are the short-range attractive

hydrocarbon (non-polar–non-polar) interactions and

that the increasing repulsive interaction of the aro-
matic rings with increasing pressure drives the layers

apart giving rise to the NR phase. A number of other

elaborate models (for details see [1,3,6]) have been

proposed for explaining the occurrence of reentrant

phases. de Miguel and del Rio [24] have performed a

computer simulation study under pressure for the

nematic reentrance in a system of parallel hard ellip-

soids with the attractive interaction represented by a
spherically symmetric square well.

There exists another line of thought to account for

the reentrance phenomena in liquid crystals, that is, the

Landau–de Gennes phenomenological approach. In

this approach, the free-energy density is written as an

expansion series in terms of order parameters and their

couplings. Cladis [25] proposed a free-energy expres-

sion to explain the occurrence of the NR phase by
considering the temperature dependence in the biqua-

dratic coupling between the nematic and smectic order

parameters. Vaz and Doane [26] showed that the

expansion of the free-energy excess in terms of order

parameters containing a temperature-independent

coupling term can give rise to the reentrant transition.

Lelidis and Durand [27] proposed a free-energy density

to describe, under electic field, the paranematic–non-
spontaneous nematic (pN–NSN), non-spontaneous

nematic–smectic A (NSN–SA), nematic–smectic A

(N–SA), isotropic–smectic A (I–SA) and smectic
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A–reentrant nematic (SA–NR) phase transitions in

achiral mesogens. These phase sequences were described

by varying the coupling between the orientational and

positional order parameters. In the free energy a cubic

and a biquadratic coupling terms were included. It is

argued that the presence of a large and positive coeffi-

cients for the biquadratic coupling yields a reentrant
nematic phase.

In two previous papers [28,29] of this series within

the framework of the Landau–de Gennes formulation

we investigated the influence of pressure on the phase

transition properties of achiral liquid crystals. The

effect of pressure on the electric-field-induced phase

transitions in a system showing a spontaneous isotro-

pic–smectic A transition was analysed in the first
paper [28] by incorporating the pressure influence in

the mean-field model through j�cj2 as well as the

coupling between the tensor nematic order parameter

Qij and j�cj2 terms. In the second paper [29], we

extended the Landau–de Gennes formulation [27] to

study the pressure variation of the reentrant transition

in a mesogenic material exhibiting the isotropic–ne-

matic–smectic A phase sequence on cooling. Using the
same phenomenological approach, in the present

work we have analysed the role of inverse layer

spacing on the origin of the occurrence of the pres-

sure-driven reentrance phenomenon. We study the

pressure variation of the reentrant transition in liquid

crystals in mesogens exhibiting the I–N–SA transition

on cooling. Based on the high-pressure experimental

studies of the temperature–pressure (T–P) phase dia-
gram as well as the ‘inverse layer spacing’ data, we

explain the occurrence of the reentrant nematic phase

within the framework of the Landau–de Gennes

phenomenological formalism in which the effect of

wave vector q0 fluctuations has been accounted for.

In this formulation not only do the couplings between

the nematic and smectic order parameters become

pressure dependent but also the metastable tempera-
ture (which appears due to the elimination of q0 from

the free energy). Unlike the earlier phenomenological

approach, here pressure-dependent Landau coeffi-

cients are needed to describe the pressure-driven

reentrant phenomena. Furthermore, the pressure

variation of all these parameters is computed over a

wide range of pressure. This paper is organised as

follows. The effective free energy, and the renorma-
lised N–SA transition temperature are derived in

Section 2. In Section 3 the occurrence of the reentrant

phenomenon is discussed and the importance of the

present formulation as compared to the earlier

phenomenology is outlined. The final Section 4 is

devoted to the main findings of the present work

and its future prospects are summarised.

2. Theoretical framework and working equations

We consider a mesogenic system which exhibits an

isotropic–nematic–smectic A (I–N–SA) phase sequence

on cooling. The nematic and smectic phases reflect
symmetry breaking related to different degrees of

freedom. Nematic ordering deals with the local prob-

ability distribution of molecular orientation f (ê), where

ê is the unit vector along the molecular axis, and it is

described by a traceless tensor order parameter

Qij ¼ S
2
ð3n̂in̂j � �ijÞ with n̂ as the director and

0 � S � 1 the order modulus. The smectic ordering

refers to the distribution in space of the molecular
mass centres. In a smectic phase, the molecules tend to

organise themselves in a layered structure. The complex

smectic order parameter cðrÞ ¼ c0 expð�ifÞmeasures

the inhomogeneity of the spatial molecular density. c0

is defined as the amplitude of the one-dimensional

density wave characterised by a phase f. In the SA

phase the wave vector �if is parallel to the director n̂,

q0 ¼ j�fj and d ¼ 2p=q0 gives the layer spacing. The
free-energy density fT of the system can be written as

fT ¼ f0 þ fNðT ;QÞ þ fAðT ;cÞ þ fNAðT ;Q;cÞ; ð1Þ

where f0, fN and fA are, respectively, the free-energy den-

sity of the isotropic, nematic and smectic A phases and fNA

is that of the coupling between the N and SA order para-

meters. fN, fA and fNA can be expanded in terms of the
order parameters and the couplings between them as [30]

fN ¼
1

2
ANQijQij þ

1

3
bNQijQjkQki þ

1

4
c1ðQijQijÞ2

þ 1

4
c2QijQjkQklQli; ð2Þ

fA ¼
1

2
AAjcj2 þ

1

4
cAjcj4 þ

1

2
b1j�icj2

þ 1

2
b2j�cj2; ð3Þ

and

fAN ¼
1

2
ljcj2QijQij þ

1

2
e1Qijð�icÞð�jc

�Þ: ð4Þ

Here only the coefficients AN and AA of the terms

quadratic in the order parameters are assumed to be

temperature dependent,

AN ¼ aNðT � T�NIÞ

and

AA ¼ aAðT � T�ANÞ: ð5Þ
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T�NI represents the lowest temperature at which the

isotropic phase is metastable and T�AN is the lowest

temperature of the uncoupled system at which the

nematic phase is unstable.

The motivation behind starting with the above

free-energy is obvious. This can generate terms in the

free energy where the inverse layer spacing parameter
q0 becomes coupled to the nematic and smectic order

parameters. This can be obtained following the work

of Mukherjee et al. [30] where both the nematic and

smectic order parameters are considered to be spa-

tially invariant. Thus Equation (1) may be written as

fT ¼ f0 þ
3

4
ANS2 þ 1

4
bNS3 þ 9

16
cNS4 þ 1

2
AAc

2
0

þ 1

4
cAc

4
0 þ

1

2
b1c

2
0q2

0 þ
1

2
b2c

2
0q4

0 þ
3

4
lS2c2

0

þ 1

2
e1Sc2

0q2
0: ð6Þ

It is apparent from this free-energy that the para-
meter q0 mimics an order parameter and it becomes

coupled not only to c2
0 but also to Sc2

0. However, we

would like to derive an effective free energy in terms of

the order parameters S and c0 only such that it pro-

vides the basic theoretical framework for reentrant

phenomena. This is, in general, done by minimising

Equation (6) with respect to q0 and c0, which gives the

following relations:

q2
0 ¼ �

1

2b2
ðb1 þ e1SÞ; ð7Þ

c2
0 ¼
�1

cA

AA �
b2

1

4b2

� �
� e1b1

2b2
S þ 3

2
l� e2

1

6b2

� �
S2

� �
;

ð8Þ

where S satisfies a cubic equation

� 4�A�A
3cA

þ 2AS þ bS2 þ 3cS3 ¼ 0: ð9Þ

Here A ¼ AN � le f f A
�
A=cA � 4�2=3cA; b ¼ bN�

6�le f f=cA; c ¼ cN � l2
e f f=cA; A�A ¼ AA � b2

1=4b2; � ¼
�e1b1=4b2 and le f f ¼ l� e2

1=6b2:
The above minimisation scheme allows us to recast

Equation (6) as an effective free energy near the N–SA

transition in terms of the renormalised parameters

which looks exactly similar to the free energy consid-

ered by Lelidis and Durand [27], that is,

f ¼ f0 þ
3

4
ANS2 þ 1

4
bNS3 þ 9

16
cNS4 þ 1

2
A�Ac

2
0

þ 1

4
cAc

4
0 þ �Sc2

0 þ
3

4
leffc

2
0S2: ð10Þ

Here T�AN is renormalised to �TAN ¼ T�AN þ T
0

AN;
T
0

AN ¼ b2
1=4b2aA. The price one pays in the process of

elimination of q0 is to modify the coupling parameters

between S and c0 as well as to renormalise the meta-

stable temperature T�AN. Since the effective free energy

Equation (10) contains coupling between S and c0,

T�AN is expected to become renormalised again due to
these couplings. Such a renormalisation of T�AN can be

addressed according to the de Gennes argument

[27,31] for the N–SA transition and the free energy

can be written as

f � fNðS0Þ þ
1

2
f
00

S0
ðS � S0Þ2

þ 1

2
aAðT � �TANÞc2

0 þ
1

4
cAc

4
0 þ �Sc2

0

þ 3

4
leff S

2c2
0; ð11Þ

where fN(S0) is the free energy of the nematic phase

and S0 is the nematic order parameter value at the

transition. After minimisation and elimination of S,

one finds

f � fNðS0Þ þ
1

2
aAðT � T

00

ANÞc
2
0 þ

1

4
~cAc

4
0 ð12Þ

where

T
00

AN ¼ �TAN �
2�

aA
S0 �

3leff

2aA
S2

0 : ð13Þ

Here ~cA ¼ cA � �2=f
00

S0
� 2�leff S0=f

00

S0
and the expres-

sions for �TAN, � and leff are given earlier.

3. Results and discussion

The above formulation provides a way to renormalise

the N–SA transition temperature in terms of the cou-

plings � and leff and the metastable temperature T
0

AN,

Equation (11), whereas in earlier approaches, the

renormalised N–SA transition temperature is derived

in terms of � only. This was due to the fact that in the

low-pressure regime (in order to describe the pressure
variation of the N–SA transition temperature), the

pressure dependence was considered only in the para-

meters e1 and b1 and was neglected in b2. In the for-

mulation of Lelidis and Durand [27], since there was

no T
0

AN (this appears in this work due to the elimina-

tion of q0 from the free energy, Equation(6)), the

appearance of the reentrant phenomenon was dis-

cussed only in the language of � and leff . The presence
of a nematic phase below the smectic phase reappears

when a high value of the orientational parameter S

disfavours the smectic positional ordering c0. This is
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represented in their Landau–de Gennes model by the

presence of a large and positive coefficient leff for the

S2c2
0 coupling term in the free energy. For such a case,

the smectic line c2
0 ¼ 0 is a parabola with

S
þ
c0¼0 ¼ �=3leffþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=3leffÞ2 � 2A�A=3leff

q
. For reen-

trance, the whole parabola defined by S
þ
c0¼0 has a

physical meaning when the SA phase can exist inside

it. In the present case, the above explanation for the

reentrant transition still holds except that the parabola

c2
0 ¼ 0 has to be described by three parameters �, leff

and T
0

AN. Since the reentrant transition is counterin-
tuitive, there can be a general remark in the present

situation. Compressing the nematic phase due to an

increase in pressure leads to a smectic phase where the

decrease in internal energy associated with the forma-

tion of layers overcomes the loss in entropy.

Compressing the SA phase further causes a strong

decrease in the internal energy where the free energy

of the system has to be minimised at the expense of the
increase in entropy. This causes a collapse of the SA

phase and hence the NR phase. At the molecular level,

as has already been mentioned in the introduction, the

long-range repulsive forces win over the short-range

attractive forces, which drives the layers apart and

gives rise to the reentrant nematic phase.

It has been observed from the experimental pres-

sure variation of the N–SA transition temperature [19]
that it increases with increasing pressure. Beyond a

critical pressure the transition temperature turns

around and the P–T phase diagram becomes a para-

bola, which in turn makes the nematic phase reappear.

This is what appears as the observed reentrant phe-

nomenon. Moreover, the layer spacing has been mea-

sured experimentally using an X-ray diffraction

method [22,23] during the reentrant transition. It
remains constant with increase in pressure.

From the expressions of the N–SA transition tem-

perature, Equation (13), and the ‘inverse layer spa-

cing’, Equation (7), in addition to the above

experimental observations [22,23,25], it is obvious

that the coupling parameters e1, b1 and b2 are pressure

dependent. This makes the renormalised metastable

temperature T
0

AN and the effective couplings � and
leff also pressure dependent. Considering the experi-

mental P–T phase diagram [25] and the pressure data

of q0 [22,23], we computed the pressure dependence of

e1, b1 and b2, and hence T
0

AN, � and leff , by using the

Landau parameters given in Table 1 from [28]. In

doing so, we have constrained that such a pressure

dependence of the above parameters satisfies the

cubic Equation (9) for S. The P dependence of T
0

AN,
� and leff is shown in Figures 1, 2 and 3. It can be seen

that they vary sharply (but continuously) at the critical

pressure Pc (,1900 bar) beyond which the NR phase

reappears. Moreover, a S–T phase diagram at two dif-

ferent pressures (above and below Pc) has been derived

from such a pressure dependence of T
0

AN, � and leff and

the c2
0 ¼ 0 line has been shown to form a parabola for

P > Pc but not for P < Pc. This confirms the appearance

of the reentrant phenomenon (Figure 4).

Figure 2. Variation of the coupling parameter leff (� 107

erg cm-3) as a function of pressure.

Table 1. Model parameters chosen [28] for the
calculation of the phase diagram.

Parameters Value

aN 0.13 � 107 erg K-1 cm-3

bN - 2.46 � 107 erg cm-3

cN 1.11 � 107 erg cm-3 erg

aA 0.13 � 107 erg K-1 cm-3

cA 0.25 � 107 erg cm-3

Figure 1. Variation of the coupling parameter � (� 107

erg cm-3) as a function of pressure.
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The present formulation for the reentrant transition

in liquid crystals can be contrasted with that of earlier

phenomenological theories such as that of Lelidis and

Durand [27]. Since in the present case the effect of q0

fluctuations has been incorporated, the free energy con-

tains terms which have couplings of q0 to the nematic
and smectic order parameters. The elimination of q0

yields a free energy which is similar to that of Lelidis

and Durand [27], except that it gives rise to a metastable

temperature which is pressure dependent. Thus one at

least needs three pressure-dependent parameters to

describe the pressure-driven reentrant phenomena

whereas in the case of Lelidis and Durand it is only

two. The latter case looks unphysical since the N–SA

transition temperature might not be largely renorma-

lised to give reentrant phenomena by just varying � and

leff , rather T
0

AN helps one to do so. Moreover, the

pressure dependence of the layer thickness makes the

metastable temperature pressure dependent. Thus, the

present work which is experimentally driven removes

the above difficulty and explains the occurrence of the

reentrant phenomenon well. Therefore, we believe this

to be a more general Landau–de Gennes approach for

the reentrant transition in liquid crystals which takes

care of q0 fluctuations in the theory. In a recent compu-

ter simulation study [24], the variation of smectic order

parameter with respect to packing fraction for different
isotherms has shown the existence of a order parameter

discontinuity at the transition (critical pressure) and

hence a second tricritical point along the SA–NR line.

We believe that the present work might be associated

with such a new tricritical point along SA–NR transition

which will be discussed in a future publication [32].

4. Summary and conclusions

A thermodynamic model based on Landau–de Gennes

theory for the thermodynamic and phase transition

properties of achiral mesogenic materials exhibiting
the phase sequence I–N–SA on cooling has been pro-

posed to explain the origin of nematic reentrance

observed in high-pressure experimental studies. The

free-energy density is written as an expansion series

containing terms involving powers of nematic and

smectic (S, c) order parameters and the (S, c) and

(S, c q0) coupling terms. The most important feature

of the work is that the inverse layer spacing q0, which
mimics an order parameter, becomes coupled to the

(S, c) order parameters. An effective free-energy den-

sity (Equation (10)) is derived by eliminating q0 from

Equation (6). In this process a N–SA metastable tem-

perature T 0AN is defined involving the coefficients aA,

b1 and b2. The basic idea is to make �, leff and T 0AN

pressure dependent. We have shown that the nematic

reentrance is caused by the pressure dependence of
these quantities. Based on a similar phenomenological

formulation, Lelidis and Durand [27] studied the

phase transitions in achiral mesogens under the appli-

cation of an electric field and showed that the electric-

field-induced transitions can be explained only by the

� and leff terms in the free energy and that the nematic

reentrance occurs due to the large and positive leff

coefficient. In the present work, the role of the inverse
layer spacing q0 has been investigated and it has been

observed that the occurrence of nematic reentrance is

due to the pressure dependence of the coupling coeffi-

cients � and leff as well as the N–SA metastable tem-

perature T 0AN. Considering the experimental P–T

phase diagram [25] and the pressure variation of q0,

the pressure dependence of �; leff and T 0AN has been

computed. We have found that these parameters vary
smoothly but rapidly at the critical pressure beyond

which the reentrant nematic phase appears. We have

evaluated the S–T phase diagram at two pressures

P > PC and P < PC from the pressure dependence of

Figure 3. Variation of T 0AN (�C) as a function of pressure.

Figure 4. The S–T phase diagram where the critical
pressure Pc , 1900 bar.
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T 0AN, and leff and the c2
0 ¼ 0 line has been shown to

form a parabola for P > PC but not for P , PC. This

provides confirmation of the existence of the reentrant

nematic phase for P � PC.
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